skip to main content


Search for: All records

Creators/Authors contains: "Hanrahan, Pat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The architecture of a coarse-grained reconfigurable array (CGRA) processing element (PE) has a significant effect on the performance and energy-efficiency of an application running on the CGRA. This paper presents APEX, an automated approach for generating specialized PE architectures for an application or an application domain. APEX first analyzes application domain benchmarks using frequent subgraph mining to extract commonly occurring computational subgraphs. APEX then generates specialized PEs by merging subgraphs using a datapath graph merging algorithm. The merged datapath graphs are translated into a PE specification from which we automatically generate the PE hardware description in Verilog along with a compiler that maps applications to the PE. The PE hardware and compiler are inserted into a flexible CGRA generation and compilation toolchain that allows for agile evaluation of CGRAs. We evaluate APEX for two domains, machine learning and image processing. For image processing applications, our automatically generated CGRAs with specialized PEs achieve from 5% to 30% less area and from 22% to 46% less energy compared to a general-purpose CGRA. For machine learning applications, our automatically generated CGRAs consume 16% to 59% less energy and 22% to 39% less area than a general-purpose CGRA. This work paves the way for creation of application domain-driven design-space exploration frameworks that automatically generate efficient programmable accelerators, with a much lower design effort for both hardware and compiler generation. 
    more » « less
  2. In this paper we explore the viability of path tracing massive scenes using a "supercomputer" constructed on-the-fly from thousands of small, serverless cloud computing nodes. We present R2E2 (Really Elastic Ray Engine) a scene decomposition-based parallel renderer that rapidly acquires thousands of cloud CPU cores, loads scene geometry from a pre-built scene BVH into the aggregate memory of these nodes in parallel, and performs full path traced global illumination using an inter-node messaging service designed for communicating ray data. To balance ray tracing work across many nodes, R2E2 adopts a service-oriented design that statically replicates geometry and texture data from frequently traversed scene regions onto multiple nodes based on estimates of load, and dynamically assigns ray tracing work to lightly loaded nodes holding the required data. We port pbrt's ray-scene intersection components to the R2E2 architecture, and demonstrate that scenes with up to a terabyte of geometry and texture data (where as little as 1/250th of the scene can fit on any one node) can be path traced at 4K resolution, in tens of seconds using thousands of tiny serverless nodes on the AWS Lambda platform. 
    more » « less
  3. null (Ed.)
    We present Fleet, a framework that offers a massively parallel streaming model for FPGAs and is effective in a number of domains well-suited for FPGA acceleration, including parsing, compression, and machine learning. Fleet requires the user to specify RTL for a processing unit that serially processes every input token in a stream, a far simpler task than writing a parallel processing unit. It then takes the user’s processing unit and generates a hardware design with many copies of the unit as well as memory controllers to feed the units with separate streams and drain their outputs. Fleet includes a Chisel-based processing unit language. The language maintains Chisel’s low-level performance control while adding a few productivity features, including automatic handling of ready-valid signaling and a native and automatically pipelined BRAM type. We evaluate Fleet on six different applications, including JSON parsing and integer compression, fitting hundreds of Fleet processing units on the Amazon F1 FPGA and outperforming CPU implementations by over 400× and GPU implementations by over 9× in performance per watt while requiring a similar number of lines of code. 
    more » « less